aid banner

수학

0(0)

[Open 강의 추천] Statistics 110: Probability

Harvard의 Stat 110은 확률을 일상과 다양한 학문에 적용하는 법을 배우는 입문 강의로, 이론과 실습 문제를 통해 확률의 핵심 개념을 깊이 있게 익히는 수업입니다.

커리큘럼

  • Lecture 1: Probability and Counting | Statistics 110강의보기
  • Lecture 2: Story Proofs, Axioms of Probability | Statistics 110강의보기
  • Lecture 3: Birthday Problem, Properties of Probability | Statistics 110강의보기
  • Lecture 4: Conditional Probability | Statistics 110강의보기
  • Lecture 5: Conditioning Continued, Law of Total Probability | Statistics 110강의보기
  • Lecture 6: Monty Hall, Simpson's Paradox | Statistics 110강의보기
  • Lecture 7: Gambler's Ruin and Random Variables | Statistics 110강의보기
  • Lecture 8: Random Variables and Their Distributions | Statistics 110강의보기
  • Lecture 9: Expectation, Indicator Random Variables, Linearity | Statistics 110강의보기
  • Lecture 10: Expectation Continued | Statistics 110강의보기
  • Lecture 11: The Poisson distribution | Statistics 110강의보기
  • Lecture 12: Discrete vs. Continuous, the Uniform | Statistics 110강의보기
  • Lecture 13: Normal distribution | Statistics 110강의보기
  • Lecture 14: Location, Scale, and LOTUS | Statistics 110강의보기
  • Lecture 15: Midterm Review | Statistics 110강의보기
  • Lecture 16: Exponential Distribution | Statistics 110강의보기
  • Lecture 17: Moment Generating Functions | Statistics 110강의보기
  • Lecture 18: MGFs Continued | Statistics 110강의보기
  • Lecture 19: Joint, Conditional, and Marginal Distributions | Statistics 110강의보기
  • Lecture 20: Multinomial and Cauchy | Statistics 110강의보기
  • Lecture 21: Covariance and Correlation | Statistics 110강의보기
  • Lecture 22: Transformations and Convolutions | Statistics 110강의보기
  • Lecture 23: Beta distribution | Statistics 110강의보기
  • Lecture 24: Gamma distribution and Poisson process | Statistics 110강의보기
  • Lecture 25: Order Statistics and Conditional Expectation | Statistics 110강의보기
  • Lecture 26: Conditional Expectation Continued | Statistics 110강의보기
  • Lecture 27: Conditional Expectation given an R.V. | Statistics 110강의보기
  • Lecture 28: Inequalities | Statistics 110강의보기
  • Lecture 29: Law of Large Numbers and Central Limit Theorem | Statistics 110강의보기
  • Lecture 30: Chi-Square, Student-t, Multivariate Normal | Statistics 110강의보기
  • Lecture 31: Markov Chains | Statistics 110강의보기
  • Lecture 32: Markov Chains Continued | Statistics 110강의보기
  • Lecture 33: Markov Chains Continued Further | Statistics 110강의보기
  • Lecture 34: A Look Ahead | Statistics 110강의보기

[Open 강의 추천] Statistics 110: Probability

(주)디엑스아이소프트 | 대표 : 이재성 | 사업자등록번호 : 655-88-02897 |
통신판매업: 2025-인천연수구-0113 | 사업장 연락처: 032-812-8012 |
인천광역시 연수구 송도문화로 119, 글로벌스타트업캠퍼스 B1006 S-13

©AID NLC. All rights reserved.